Senate Energy & Telecomm.Comm. Exhibit No. 8 Date | 20 2015 Bill No. SR 134 #### **MEMORANDUM** TO: Commissioners, Commissioner-elect Johnson, Kate, Justin, Bob D., Eric FROM: Will and Neil DATE: December 23, 2014 RE: Revenue and cost responsibility impacts of net metering. # I. Purpose This memo responds to a request by Commissioner Kavulla for information on net metering activity within NorthWestern Energy's (NorthWestern) service area, its impact on NorthWestern's delivery service (transmission & distribution) revenue, and whether the revenue impact involves a subsidy. This memo is not a comprehensive analysis of the costs, benefits, or public policy merits of net metering. In preparing the memo, we relied on information provided by NorthWestern (see Attachment 1). # II. Background Montana law allows a retail customer of a regulated utility to install a small electric generating facility on their premises, interconnect the generating facility with the utility's distribution system, and operate the facility in parallel with the utility's system for the purpose of offsetting part or all of their electricity requirements. Mont. Code Ann. §§ 69-8-103(19), 69-8-602 (2013). The customer's electric generating facility must be fueled by wind, solar, or hydro power and its capacity cannot exceed 50 kilowatts. *Id.* at § 69-8-103(19). Customers who opt for this arrangement are called "customer-generators" and the arrangement is called "net metering." *Id.* at § 69-8-103(6) and (19). A utility must allow a customer-generator to interconnect a generating facility using a standard kilowatt-hour meter capable of registering the flow of electricity in two directions, and must charge the customer-generator the same monthly fee it charges other customers in the same rate class. *Id.* at § 69-8-602. However, the law authorizes the Commission to require separate metering of the customer-generator's facility, if appropriate, based on public comment and an analysis of the costs and benefits of separate metering. *Id.* The law also authorizes the Commission to determine, after an opportunity for public comment, whether the utility will incur direct costs to interconnect customers' generating facilities and administer net metering that exceed offsetting benefits and whether any net costs should be imposed on customer-generators. *Id.* To date, the Commission has not been asked to analyze, and has not analyzed, the costs and benefits of separate metering or whether utilities incur costs to implement net metering that exceed the benefits.¹ A utility must bill a customer-generator based on a net energy measurement. *Id.* at 69-8-603. When a meter reading indicates that the utility supplied the customer-generator more electricity than the customer-generator's facility generated in a billing period, the utility must bill the customer-generator for the net kilowatt-hours of electricity it supplied. When the customer generator's facility generated more electricity than the utility supplied in a billing period, the utility must credit the customer-generator's account for the excess kilowatt-hours of electricity and apply the credit in the subsequent billing period. After every 12 billing periods the utility must eliminate any kilowatt-hour credit balance from the customer-generator's account without compensation. *Id.* Many of the costs a utility incurs to deliver electricity to homes and business are fixed in the short-run. Investment costs for poles, wires, substations, transformers, meters, billing and accounting systems, and trucks and maintenance equipment, and expenses associated with employee wages, do not tend to change from month-to-month based on the amount of electricity customers consume.² However, utilities often bill customers for electricity delivery services through a combination of usage-based (i.e., per kilowatt-hour of electricity) and fixed prices. Currently, NorthWestern bills residential customers about 3.8¢ per kilowatt-hour and \$5.25 per month for delivery service. NorthWestern bills other services similarly. For example, NorthWestern charges customers about 6.9¢ per kilowatt-hour for electricity supply service, although many supply costs are also largely fixed in the short-run, such as the investment costs for Colstrip Unit 4 and the hydroelectric plants and payments to contracted resources such as Basin Creek. ¹ Mont. Code. Ann. § 69-8-601 states that it is in the public interest to promote net metering because it encourages private investment in renewable energy resources, stimulates Montana's economic growth, and diversifies the energy resources used in Montana. ² In the long run, a utility's delivery service costs are affected by customer consumption. By influencing customergenerators' demand, net metering may influence a utility's long-run marginal costs. The Commission has historically approved this method of pricing electricity delivery service for a variety of reasons. Such price structures give customers greater control over their utility bills compared to price structures that recover delivery service costs through fixed charges alone. Such price structures may encourage utilities to control costs and may contribute to overall electricity prices that are equitable and promote efficient use of electricity. However, this method of pricing also allows customer-generators to reduce a portion of their bill intended to recover a utility's fixed delivery service costs; each kilowatt-hour of electricity a customer-generator's generating facility offsets means the customer pays about 3.8¢ less toward NorthWestern's delivery service costs. Similar impacts occur when customers take action to become more energy efficient or simply change their consumption habits. In addition, revenue impacts from net metering do not occur in isolation. Many other factors affect whether a utility's prices, in aggregate, adequately recover the total cost of service, including weather, general economic conditions, the rate of customer growth, changes in the price of fuel and other factors of production, and tax changes, to name a few. When a utility's total revenue is not sufficient to cover its total costs (including a sufficient return on invested capital) it may look for ways to operate more efficiently and/or apply to the Commission for higher rates. ## III. Estimated revenue impacts of net metering on NorthWestern NorthWestern has provided the current number, installed capacity, and estimated annual energy output of customer-generator facilities operating within its system.³ As of October, 2014, 1,333 (about 0.4%) of NorthWestern's roughly 340,000 Montana customers were customer-generators. These customer-generators have installed about 5.6 MW of generating capacity, including 4.7 MW (83%) of solar photovoltaic (PV) generating capacity and 0.87 MW (15%) of wind generating capacity. On average, residential solar PV facilities appear to offset about half ³ In a November 14, 2014 email, staff requested that NorthWestern Energy provide specific net metering statistics, including the number of facilities by generating type (solar, wind, hydro) and customer category (household, business), total installed capacity, and historical data on the number of facilities. Attachment 1 is NorthWestern's response. of a typical customer's annual electricity use, but we have not compared baseline electricity use to net metered use on a customer-by-customer basis.⁴ We estimated the annual impact of net metering on NorthWestern's delivery service revenue based on estimated annual energy output from existing customer-generator facilities. As the table below shows, existing customer-generator facilities produce about 7,351,000 kilowatthours of electricity annually. At current prices, NorthWestern's delivery service revenue would be about \$300,000 per year more but for the electricity generated by these facilities.⁵ ### Current net metering statistics* | | Residential | Commercial | Total | |---|-------------|------------|-----------| | Cutomer-generators (Total) | 1,040 | 293 | 1,333 | | Facility capacity (Total KW) | 3,459 | 2,161 | 5,620 | | Annual facility energy (Total kWh) | 4,499,000 | 2,852,000 | 7,351,000 | | Usage-based delivery service price (\$/kWh)** | \$0.037694 | \$0.044929 | | | Annual revenue reduction | \$169,585 | \$128,138 | \$297,723 | ^{*} As of October 2014 NorthWestern recovers much of this roughly \$300,000 annual delivery service revenue reduction through two regulatory mechanisms. First, the Commission periodically sets delivery service rates in general rate cases. Those rates reflect the impact of net metering on the overall demand for electricity. Current usage-based delivery service rates reflect customers' overall demand in 2008 and, therefore, reflect the impact of customer-generator facilities installed before that time. Second, the Commission has implemented a lost revenue adjustment mechanism (LRAM) that allows NorthWestern to recover the estimated revenue impacts of net metering incentivized through universal system benefits programs between rate cases.⁶ ^{**} Delivery service rates are the sum of transmission and distribution rates ⁴ NorthWestern reported 960 residential solar PV customer-generators that generate a total of about 4,095,000 kilowatt-hours annually, or about 4,266 kilowatt-hours per customer per year. A typical NorthWestern residential customer consumes about 9,000 kilowatt-hours per year. ⁵ Annual revenue impacts are derived by multiplying estimated annual energy generation from customer facilities by the applicable usage-based delivery service tariff rates for the residential and non-demand metered business (Schedule GSEDS-1) rate classes. Together, these rate classes represent about 93% of all customers. ⁶ Mont. Code. Ann. § 69-8-402 establishes electric utility universal system benefits programs. NorthWestern's E+ Renewables program is a qualifying universal system benefits program that provides financial incentives to encourage customers to install small electricity generators such as roof-top solar PV systems that are eligible for net metering. The Commission approved a lost revenue adjustment mechanism for delivery service revenue in Or. In NorthWestern's last general rate case the Commission approved a total cost of electric delivery service of about \$230 million. Or. 7046i, Dkt. D2009.9.129, pp. 54, 57 (Jun. 30, 2011). The roughly \$300,000 annual delivery service revenue impact from net metering represents about 0.13% of that annual delivery service cost and about 0.04% of NorthWestern's roughly \$700 million total electric utility sales revenue in 2013. NorthWestern Energy 2013 Electric Utility Annual Report, Schedule 36. Interest in net metering appears to be increasing. NorthWestern Energy provided the chart below showing annual requests for net metering arrangements since 1999 (also see Attachment 1). # IV. Equity impacts of net metering As described above, net metering changes customer-generators' consumption profiles. All other things equal, given that NorthWestern's delivery service costs are largely fixed in the short-run and are recovered mostly with usage-based prices, the change in customer-generators' consumption profiles shifts how delivery service costs are recovered from customers – less from customer-generators, more from other customers. Currently, this shift amounts to less than 50ϕ ⁶⁵⁷⁴e (Dec. 14, 2005). NorthWestern has sought and received Commission approval to recover lost delivery service revenue associated with its E+ Renewable program. See, e.g., Dkt D2012.5.49, Or. 7219h. 4. Historical year-end net metering installations since 1999. Also, can someone confirm the following: 1. From the SBW report, E+ Renewable systems saved/generated 2,375,014 kWh over the 2007-2011 evaluation period. Are all these renewable systems net metered? There may be some that are not net metered. 2. The 2013-2014 tracker period, E+ Renewable savings/generation was 548,311 kWh and lost T&D revenue was about \$20,360. The E+ Renewable savings/generation value of 548,311 kWh is the 2013-2014 tracker 9 months actual + 3 months estimated annual savings/generation for the projects that came on-line and were expected to come on-line during the 2013-14 tracker period. \$20,360 for lost T & D revenue is a reasonable value for the annual generation associated with these projects. The lost revenue included in the 2013-2014 tracker for these incremental projects would be half of the annual value. These lost revenue values do not include lost revenues associated with generation/savings from projects that came on line prior to the 2013-14 tracker period. 3. The SBW report determined that solar PV systems funded through the E+ Renewable program had capacity factors in the range of about 15% - 16%, with the average for commercial sector systems being slightly higher than residential systems. The SBW report used a weighted average of 0.157 (15.7%) for commercial solar PV projects and a weighted average of 0.147 (14.7%) for residential solar PV projects.